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Introduction
In the past decades, treatment of autoimmune 
conditions such as multiple sclerosis (MS) has 
experienced significant changes, resulting from 
major advances in disease-modifying therapies 
(DMTs). However, considering the growing 
armamentarium of immunomodulatory drugs, 
selecting the right therapeutic agent for an indi-
vidual patient has become more challenging. 
Genome-wide association studies have identified 
hundreds of shared susceptibility loci for autoim-
mune diseases,1 and it is not uncommon for 
patients to have more than one autoimmune dis-
order. While some of these patients may present 
therapeutic challenges, it also creates the oppor-
tunity to utilize elegantly specific immunosup-
pressants targeting two autoimmune conditions 
simultaneously and consequently ‘kill two birds 
with one stone’. MS is associated with several 
other auto-inflammatory conditions, which share 

not only certain susceptibility genes, but also gen-
eral pathophysiological principles. For example, 
psoriasis (PsO) – like MS – is a largely T-cell 
driven disease with the interleukin (IL)23/T 
helper (Th)17-axis being critically involved in the 
pathology of both conditions.2,3 These immuno-
logical interfaces can be used to repurpose DMTs 
that were initially developed for other inflamma-
tory disorders and tailor crossover therapies for 
the individual patient, as shown for the anti-IL17 
antibody secukinumab4 or sphingosine-1-phos-
phate receptor (S1PR) modulators such as ozani-
mod.5 In contrast, other DMTs may exacerbate 
pre-existing autoimmune diseases or even trigger 
their onset. For instance, tumor necrosis factor 
alpha (TNFα) blockers are known potentially to 
induce or worsen demyelinating conditions.6–8 
Thus, it is important to shed a light on the ever-
growing jungle of immunosuppressants and the 
possibilities to repurpose these substances for the 

Treatment approaches to patients 
with multiple sclerosis and coexisting 
autoimmune disorders
Tobias Brummer, Tobias Ruck, Sven G. Meuth, Frauke Zipp and Stefan Bittner

Abstract:  The past decades have yielded major therapeutic advances in many autoimmune 
conditions – such as multiple sclerosis (MS) – and thus ushered in a new era of more targeted 
and increasingly potent immunotherapies. Yet this growing arsenal of therapeutic immune 
interventions has also rendered therapy much more challenging for the attending physician, 
especially when treating patients with more than one autoimmune condition. Importantly, 
some therapeutic strategies are either approved for several autoimmune disorders or 
may be repurposed for other conditions, therefore opening new curative possibilities in 
related fields. In this article, we especially focus on frequent and therapeutically relevant 
concomitant autoimmune conditions faced by neurologists when treating patients with MS, 
namely psoriasis, rheumatoid arthritis and inflammatory bowel diseases. We provide an 
overview of the available disease-modifying therapies, highlight possible contraindications, 
show pathophysiological overlaps and finally present which therapeutics can be utilized as a 
combinatory treatment, in order to ‘kill two birds with one stone’.

Keywords:  immunotherapy, inflammatory bowel disease, multiple sclerosis, psoriasis, 
rheumatoid arthritis

Received: 10 May 2021; revised manuscript accepted: 8 July 2021.

Correspondence to:	
Stefan Bittner  
Department of 
Neurology, Focus 
Program Translational 
Neuroscience (FTN) 
and Immunotherapy 
(FZI), Rhine-Main 
Neuroscience Network 
(rmn2), University Medical 
Center of the Johannes 
Gutenberg University 
Mainz, Langenbeckstr. 
1, Rhineland-Palatinate, 
Mainz 55131, Germany 
bittner@uni-mainz.de

Tobias Brummer  
Frauke Zipp  
Department of 
Neurology, Focus 
Program Translational 
Neuroscience (FTN) and 
Immunotherapy (FZI), 
Rhine-Main Neuroscience 
Network (rmn2), University 
Medical Center of the 
Johannes Gutenberg 
University Mainz, Mainz, 
Germany

Tobias Ruck  
Sven G. Meuth  
Department of Neurology, 
Heinrich-Heine-University 
Düsseldorf, Düsseldorf, 
Germany

1035542 TAN0010.1177/17562864211035542Therapeutic Advances in Neurological DisordersT Brummer, T Ruck
research-article20212021

Review



Therapeutic Advances in Neurological Disorders 14

2	 journals.sagepub.com/home/tan

treatment of other inflammatory comorbidities, 
such as MS.

Of note, systemic cortisone is the common thera-
peutic denominator for almost all inflammatory 
conditions, yet due to its long-term unwanted side 
effects, cortisone is generally used to induce a 
state of remission quickly and not as a continu-
ously administered DMT. In fact, many DMTs 
are used to taper cortisone intake to low levels. 
Thus, we excluded cortisone from this review and 
instead exclusively focused on long-term DMTs. 
Furthermore, we specifically focus on the most 
common concomitant autoimmune diseases that 
provide specific challenges for clinicians treating 
patients with MS, namely PsO, rheumatoid arthri-
tis (RA), and inflammatory bowel diseases [IBDs: 
ulcerative colitis (UC) and Crohn’s disease (CD)]. 
Thus, the aim of this review is to offer an overview 
of the available therapeutic tools across those dis-
eases and to propose pragmatic treatment 
approaches for the selection of potential disease-
overlapping substances, when facing patients with 
MS and coexisting autoimmune disorders.

Common immunosuppressants

Azathioprine (AZA)
Azathioprine (AZA) and its active metabolite 
6-mercaptopurine (6-MP) are antimetabolites, 
which block the de novo synthesis of nucleobases 
and thus affect rapidly dividing lymphocytes. 
AZA is approved by the European Medicines 
Agency (EMA) and the US Food and Drug 
Administration (FDA) for many inflammatory 
conditions, including RA9 (Table 1). In IBD, 
AZA can be utilized in combination with other 
therapeutics (like TNFα  blockers) to induce 
and maintain remission; however, its effect com-
mences with a delay of several months. While 
AZA is no longer routinely used in MS (despite 
being approved in some countries, including 
Germany), it is an established therapeutic option 
in other demyelinating conditions, such as low-
active neuromyelitis optica spectrum disorder 
(NMOSD).10,11 In clinical studies, AZA has 
proved non-inferiority12 or even superiority13 to 
interferon-beta (IFNβ), although the investi-
gated cohorts were relatively small and the num-
ber of adverse events (e.g. nausea, vomiting, and 
lymphopenia) was generally higher, while AZA 
additionally increases the long-term risk of 

malignancies.14 Thus, despite its very limited use 
in MS now, it is a reasonable option in patients 
with, among other things, comorbid IBD.

Cyclosporine A and tacrolimus
Cyclosporine A (CYA) and tacrolimus (TAC) are 
inhibitors of calcineurin, an enzyme involved in 
the transcription of IL-2 and thus T-cell activa-
tion and proliferation. Both substances have a 
broad operational field, including RA,15 IBD16,17 
and PsO15,18 (Table 1). Especially in diseases with 
cutaneous manifestations, CYA and TAC can 
also be applied topically. CYA has been shown to 
reduce the relapse rate in relapsing–remitting 
multiple sclerosis (RRMS),19,20 and there are also 
promising case reports and small trials for TAC in 
MS.21 However, with more potent and targeted 
DMTs in hand, both substances are not first line 
treatment options for IBD/RA/PsO patients with 
comorbid MS.

(Hydroxy-)chloroquine (HCQ)
The anti-malarial agent hydroxychloroquine 
(HCQ) blocks lysosomal enzymes by raising the 
intra-lysosomal pH, thus hampering the presenta-
tion of antigens to CD4+ T cells via major histo-
compatibility complex (MHC) II. HCQ is in 
clinical use for several autoimmune conditions 
including systemic lupus erythematosus (SLE) 
and RA (Table 1), yet has proved to be less effi-
cient than other disease-modifying antirheumatic 
drugs (DMARDs).22 So far, there is only experi-
mental evidence [in experimental autoimmune 
encephalomyelitis (EAE) and cuprizone models] 
for the efficacy of HCQ in neuroinflammatory 
conditions.23–25 However, there are two ongoing 
clinical trials for the application of HCQ in pro-
gressive MS (NCT02913157 and NCT03109288); 
publication of the final results is still pending. 
Thus, data are currently too limited to recom-
mend HCQ as a treatment option in patients with 
MS and coexisting autoimmune disorders.

Methotrexate (MTX)
Methotrexate (MTX) is an antimetabolite and 
competitive inhibitor of folate-dependent enzymes, 
such as dihydrofolate reductase (DHFR), thereby 
blocking purine and pyrimidine base biosynthesis 
necessary for fast (T-) cell proliferation. MTX is 
generally used for the treatment of RA, IBD, and 
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Table 1.  FDA approval status of presented disease-modifying therapies in regards to specific autoimmune disorders.

Autoimmune disorders

  MS IBD PsO RA SpA SLE PSS SS GCA TA GPA PAN EGPA MPA BD SARC

Disease-modifying therapies

CORT + + + + + + + + + + + + + + + +

MTX (+) (+) + + + (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

AZA (+) (+) (+) + (+) (+) (+) (+) (+) − (+) − (+) (+) (+) (+)

MMF − (+) (+) (+) − (+) (+) (+) − − − − − − (+) −

5-ASA − + (+) + (+) (−) − − − − − − − − − −

HCQ − (+) − + (+) + (+) (+) − (+) − (+) − − − (+)

CYA/TAC (+) (+) + + (+) (+) (+) (+) − (+) (+) (+) (+) (+) (+) (+)

IFN + − − − − − − − − − − − − − (+) −

TER/LEF + − + + (+) − − − − − (+) − (+) (+) − −

DMF + − (+) − − − − − − − − − − − − −

S1PR + (+) − − − − − − − − − − − − − −

TOC − − − + − (+) (+) − + (+) (+) (+) (+) (+) (+) −

USTE − + + − (+) − − − − − − − − − − −

SECU (+) − + − + − − − − − − − − − − −

Anti-TNFα − + + + + − − − − (+) (+) − (+) (+) (+) (+)

NATA + + − − − − − − − − − − − − − −

ALEM + − − (+) − − − − − − − − − − − −

Anti-CD20 + + − + + + (+) (+) − − + + + + − −

  JAK − + + + − − − − − − − − − − − −

  Abatacept − − − + − − − − − − − − − − − −

  Anakinra − − − + − − − − − − − − − − − −

+, FDA approved; (+), used off-label; −, not generally used.
5-ASA, 5-aminosalicylic acid; ALEM, alemtuzumab; Anti-CD20, CD20 antibodies; Anti-TNFα, TNFα antibodies; AZA, azathioprine; BD, Behcet’s 
disease; CORT, cortisone; CYA/TAC, cyclosporine/tacrolimus; DMF, dimethylfumarate; EGPA, eosinophilic granulomatosis with polyangiitis; FDA, 
US Food and Drug Administration; GCA, giant cell arteritis; GPA, granulomatosis with polyangiitis; HCQ, hydroxchloroquine; IBD, inflammatory 
bowel disease; IFN, interferon; JAK, Janus kinase inhibitor; MMF, mycophenolate mofetil; MPA, microscopic polyangiitis; MS, multiple sclerosis; 
MTX, methotrexate; NATA, natalizumab; PAN, polyarteritis nodosa; PsO, psoriasis; PSS, primary systemic sclerosis; RA, rheumatoid arthritis; S1PR, 
sphingosin-1-phosphate receptor modulator; SARC, sarcoidosis; SEC, secukinumab; SLE, systemic lupus erythematosus; SpA, spondylo arthritis; 
SS, Sjögren’s syndrome; TA, Takayasu arteritis; TER/LEF, teriflunomide/leflunomide; TOC, tocilizumab; USTE, ustekinumab.

PsO,15,18 is well tolerated and is thus in rampant 
use for many autoimmune conditions including 
vasculitis and SLE (Table 1). Despite some favora-
ble effects on relapse rates and disease progression 

in early trials,26,27 more potent and targeted DMTs 
were developed as first line treatment options in 
MS. However, MTX may serve as a therapy for 
MS patients with comorbid RA, IBD or PsO.
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Mycophenolate mofetil (MMF)
Mycophenolate mofetil (MMF) inhibits the 
enzyme inosine monophosphate dehydrogenase, 
which is crucially involved in de novo biosynthe-
sis of purine nucleobases. MMF is relatively spe-
cific to lymphocytes, because these cells lack 
salvage pathways for purine biosynthesis compen-
sating for this deficiency. MMF has been widely 
used for immunosuppression after organ trans-
plantation and has proved to be effective in vari-
ous autoimmune conditions including IBD,28 
PsO29 and RA.30 In a retrospective analysis con-
ducted by Michel et al.,31 MMF failed to influ-
ence positively MS-related disability progression 
as assessed using the Expanded Disability Status 
Scale (EDSS), yet significantly reduced relapse 
rates in MS patients. This was further corrobo-
rated in a more recent study on patients with pro-
gressive MS.32 Due to limited data on MS and its 
lack of approval for use in MS, PsO, RA or IBD, 
MMF might not be among the first choices for a 
cross-over therapy.

5-Aminosalicylate (5-ASA)
Sulfasalazine consists of sulfapyridine and 5-ami-
nosalicylic acid (5-ASA), which is either absorbed 
intact or as sulfapyridine. While 5-ASA affects 
arachidonic acid metabolism and thereby inflam-
mation in IBD, intact sulfasalazine or sulfapyri-
dine – like MTX – have been shown to inhibit 
folate-dependent enzymes and both appear to be 
active in RA.22 Thus, 5-ASA is approved for the 
treatment of IBD and RA33,34 (Table 1). 
Regarding MS, sulfasalazine has promoted remy-
elination and suppressed EAE in several animal 
models of MS,35,36 yet aggravated EAE or com-
pletely failed to show beneficial effects in rat EAE 
models.37,38 In clinical studies, 5-ASA did not 
reduce EDSS progression39 and there is also a 
case report of a patient developing MS under a 
long treatment with sulfasalazine.40 Thus, sul-
fasalazine may not be considered a suitable thera-
peutic option for MS, but oral or topical 
sulfasalazine may serve as an add-on DMT for 
RA and IBD.

Monoclonal antibodies

Alemtuzumab
Alemtuzumab is a humanized monoclonal anti-
body targeting and thus depleting CD52-
expressing B and T cells. Because of its safety 

profile, the use of alemtuzumab is reserved for 
highly active RRMS patients who have not suffi-
ciently responded to other therapies.41 Initially, the 
efficacy of alemtuzumab was assessed for the treat-
ment of therapy-refractory RA.42 However, 
because of the induction of profound lymphopenia 
with a concomitant slow immune reconstitution, 
the trials were eventually cut short.43 So far, there 
is only one case report showing a beneficial effect 
of alemtuzumab in a patient with both chronic 
plaque PsO and MS;44 there is only limited experi-
mental evidence for the benefit of an anti-CD52 
therapy in IBD.45 Thus, a certain subgroup of 
patients with highly active RRMS plus PsO/RA 
may profit from a treatment with alemtuzumab.

Anti-CD20 antibodies (rituximab,  
ocrelizumab, ofatumumab)
Anti-CD20 antibodies target and deplete CD20-
expressing B cells. Rituximab has been in clinical 
use for moderate to severe RA since 2006, but has 
also been utilized for other autoimmune condi-
tions, including demyelinating disorders and cer-
tain types of leukaemia.46,47 There is increasing 
evidence that T and B cells both play equally 
important roles in the pathogenesis of MS.48 
Moreover, there are several studies and case 
reports showing the efficacy of rituximab in MS. 
However, the antibody has not been formally 
approved for the treatment of RRMS and is thus 
used off-label to a varying degree with considerable 
variations across different countries.49,50 Recently, 
the humanized anti-CD20 antibody ocrelizumab 
has been shown to reduce disease activity of RRMS 
and primary progressive multiple sclerosis (PPMS) 
patients and is the first approved substance for the 
treatment of PPMS.51,52 Ocrelizumab has also 
been tested in RA patients, showing a promising 
safety profile and therapeutic efficacy.53 In IBD 
and PsO, the reports for CD20 antibodies have not 
been as promising: an Icelandic study recently 
reported a six-fold increased risk of developing an 
IBD in patients treated with rituximab,54 and there 
are several case reports of patients who developed 
colitis or PsO during an anti-CD20 treatment with 
rituximab or ocrelizumab.55–58 Immunity critically 
relies on the homeostasis of pro and anti-inflam-
matory stimuli and CD20+ cells have an important 
regulatory and protective role in the gastrointesti-
nal system59,60 as well as the skin;61 thus B cell 
depletion may trigger an abnormal B cell-mediated 
T cell regulation and, as a consequence, PsO or 
IBD. Thus, CD20 antibodies may be the ideal 
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therapeutic for patients with highly active MS and 
RA, yet should be carefully considered in MS plus 
IBD/PsO patients.

Natalizumab
Natalizumab is a humanized IgG4 monoclonal 
antibody that specifically targets the α4 integrin 
and thus hampers the invasion of (autoreactive) 
lymphocytes into the central nervous system 
(CNS) via α4β1 integrin and into the gut via 
α4β7 integrin. Natalizumab is approved for the 
treatment of highly active RRMS, but has also 
been used in IBD trials, in which the antibody has 
proved efficient in the induction and maintenance 
of clinical remission in CD.62,63 However, due to 
the risk of progressive multifocal leukoencepha-
lopathy (PML) (as a consequence of a reactiva-
tion of JC virus), natalizumab is not used in IBD 
patients.64 Instead, the humanized monoclonal 
antibody vedolizumab, which only targets the 
α4β7 integrin–MAdCAM-1 interaction in the 
intestinal mucosa thereby avoiding the risk of 
developing PML,65 has proved to be the safer 
therapeutic option for patients with IBD. As the 
effect of vedolizumab is limited to the intestine, it 
is not an option for patients with RRMS.66 
Moreover, there have been several cases of MS 
patients who developed RA or experienced an 
onset or exacerbation of PsO on treatment with 
natalizumab.67–70 Natalizumab has been shown to 
alter the composition of lymphocyte subpopula-
tions in the peripheral blood, with especially 
CD8+ T and CD19+ B cells being increased.71 
These changes – in addition to the hampered 
migration of leukocytes across the blood–brain or 
blood–gut barrier – could shift the inflammatory 
response from the CNS towards other tissues 
(e.g. the skin or joints), thus triggering the onset 
of PsO or RA. Thus, natalizumab may be an ele-
gant option for patients with highly active MS 
and CD, but should be used with caution in 
patients with comorbid PsO or RA.

TNFα blockers (adalimumab, infliximab, 
etanercept, golimumab, certolizumab-pegol)
TNFα is a key pro-inflammatory cytokine that 
induces the production of C-reactive protein, reg-
ulates the ability of antigen-presenting cells to 
activate T cells and induces the production of 
various pro-inflammatory cytokines, chemokines 
and cell-adhesion molecules.72 Hence, blocking 
TNFα with monoclonal antibodies (adalimumab, 

infliximab, golimumab and certolizumab-pegol) 
or the soluble TNFα receptor–IgG fusion protein 
etanercept, has proved to be a very effective ther-
apeutic strategy for several autoimmune condi-
tions, including PsO, RA and IBD73,74 (Table 1). 
Moreover, TNFα has an even broader range of 
effects, as tumor necrosis factor alpha receptors 
(TNFRs) are expressed in almost every cell 
type.75 However, there are multiple case reports 
of TNFα blockers promoting or exacerbating 
demyelinating diseases.6–8 The potential underly-
ing mechanism was unravelled by the discovery of 
a MS-associated Δ6-TNFR1 genetic variant.76 
This gene encodes a soluble protein comprising 
the extracellular TNFR1 domain (TNF receptor 1),  
and acts as a decoy receptor for TNFα (similar to 
etanercept), thus preventing potentially neuro-
protective signalling through membrane-bound 
TNFR1. Furthermore, MS is positively associ-
ated with many other TNFα gene variants.77 
Therefore, an ongoing anti-TNFα therapy (for 
PsO, RA or IBD) should be discontinued in 
patients with coexisting MS.

Tocilizumab and satralizumab
Tocilizumab and satralizumab are monoclonal 
humanized IL-6 receptor antibodies, which have 
become a valuable therapeutic asset in several 
inflammatory conditions, including RA,78 giant 
cell arteritis (GCA) and aquaropin-4-positive 
NMOSD.79 Although there are a few case reports 
describing a presumably secondary CNS autoim-
munity on tocilizumab treatment, it has to be 
taken into account that one of these patients was 
treated with TNFα blockers prior to tocilizumab 
and two patients had an already established MS 
and relapsed during the treatment.80–82 On the 
other hand, there are also reports of a successful 
MS therapy with tocilizumab;81,83 there is further 
experimental evidence showing that blockage of 
IL-6R can be protective of EAE.84 However, con-
sidering the lack of clinical data, we cannot rec-
ommend the general use of tocilizumab in patients 
with MS and RA.

Secukinumab
Secukinumab is a fully human monoclonal IgG1κ 
IL-17A antibody, which has demonstrated effi-
cacy in phase II and III trials of PsO, psoriasis 
arthritis and RA.85–87 The IL23/Th17 axis plays a 
major pathophysiological role in many autoim-
mune disorders and has particularly been linked 
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to disease severity in PsO and MS.2,3 In fact, 
Th17 cells were initially described in the EAE 
model.88,89 Secukinumab has demonstrated 
promising trends in a phase II trial with RRMS 
patients;4 although the study’s primary endpoint 
was not reached. Moreover, there are several case 
reports that describe a successful treatment of 
comorbid PsO/MS with secukinumab.90–94 All 
patients described had a relapsing–remitting dis-
ease course and remained clinically and radiologi-
cally stable during their respective follow-up 
periods. Thus, more advanced monoclonal IL-17 
antibodies with improved pharmacodynamics, 
such as brodalumab (anti-17A) or ixekizumab 
(anti-17A) may also be considered for application 
in MS. Hence, secukinumab may be one of the 
best therapeutic options for patients with PsO 
and coexisting RRMS.

Ustekinumab
Ustekinumab is a fully human monoclonal anti-
body, targeting the p40 epitope of IL-12 and IL-23. 
Therefore, ustekinumab blocks the differentiation 
of naive CD4+ lymphocytes into Th1 and Th17 
cells and has shown clinical efficacy in phase III 
studies for PsO and IBD.95–97 In MS animal mod-
els, ustekinumab has proved effective98 and 
IL-23R−/− mice are even protected from EAE.99,100 
Yet ustekinumab failed to transfer those results to a 
clinical phase II trial.101 This was further corrobo-
rated in an EAE model with mice lacking the 
p40-ustekinumab target epitope.102 However, the 
patients included in the ustekinumab study had a 
chronic disease course with long disease durations 
with low relapse activity. Furthermore, it is not 
clear whether the antibody can cross the blood–
brain barrier effectively. Nevertheless, there are two 
case reports of patients with MS and comorbid 
PsO successfully treated with ustekinumab.103 
Interestingly, these patients also had a chronic dis-
ease course, but did not experience disease progres-
sion over a follow-up period of 3–4 years. Taken 
together, ustekinumab and potentially also other 
IL-23 antibodies (risakinzumab, tildrakizumab and 
guselkumab) may have beneficial effects in early 
MS, but further research needs to be conducted.

Oral/injectable MS therapeutics

Fumaric acid esters
The anti-inflammatory effect of fumarates on 
psoriatic lesions was initially discovered in the 

late 1950s104 and it took almost half a century 
until dimethyl fumarate (DMF) was finally intro-
duced as a potent MS therapeutic.105 DMF exerts 
its anti-inflammatory effects through activation of 
the nuclear factor erythroid 2-related factor 2 
(Nrf2) transcriptional pathway and the interac-
tion with hydroxycarboxylic acid receptor 2 
(HCAR2),106,107 which fosters the upregulation of 
antioxidant and cytoprotective response genes108 
and shifts T cells from a Th1/Th17 profile 
towards a Th2 phenotype. This was further cor-
roborated by experimental results in murine PsO 
and EAE models as well as in humans.109 
Fumarates are approved for the treatment of mild 
to moderate RRMS, moderate to severe PsO110–112  
(although both being approved in distinct dis-
ease-specific drug formulations) and have shown 
promising results in a model of experimental coli-
tis.113 Furthermore, DMF is in phase II clinical 
testing for the treatment of RA.114 As DMF is 
approved for both RRMS and PsO, it is the obvi-
ous choice for patients with this particular comor-
bidity, as exemplified by case reports of patients 
who experienced remission of PsO flares and 
additionally remained MS relapse-free on a treat-
ment with DMF.115,116 However, especially older 
patients may be at risk of developing PML.

Interferons
Interferons (IFNs) are long established DMTs 
for the treatment of mild to moderately active 
MS. Similar to results in EAE models, IFNs have 
shown efficacy in murine models of experimental 
arthritis,117,118 yet – unlike in MS – these results 
were either not replicated in RA patients119 or 
showed conflicting results.120–122 The same holds 
true for IBDs and PsO.123–128 Exacerbations of 
autoimmune conditions during an IFN treatment 
are actually not uncommon and have also been 
shown for NMOSD.129,130 In PsO, this may be 
due to a direct involvement of IFNs in PsO patho-
physiology: type 1 interferons (IFNα and IFNβ) 
are key cytokines induced during skin damage; 
psoriatic lesions can be triggered by skin injury, 
also known as ‘Köbners phenomenon’.131 
Furthermore, the type 1 IFN pathway is neces-
sary for the development of psoriasis-like inflam-
matory diseases in mice.132,133 Ultraviolet (UV) 
light therapy, on the other hand, ameliorates PsO 
flares, as it triggers ubiquitination and downregu-
lation of the type 1 interferon receptor IFNAR1 
and thus IFN signalling.134 Yet despite these neg-
ative associations, an established IFN therapy in 



T Brummer, T Ruck et al.

journals.sagepub.com/home/tan	 7

MS patients should not necessarily be discontin-
ued when a second autoimmune condition is 
diagnosed.

S1PR modulators (fingolimod,  
siponimod, ozanimod)
S1PR modulators cause an internalization and 
degradation of S1PRs, thus trapping lymphocytes 
in secondary lymphoid organs (e.g. lymph 
nodes).135 This reduces the number of circulating 
lymphocytes and ultimately precludes their inva-
sion into the CNS. In 2010, the non-selective 
S1PR modulator fingolimod was the first orally 
administered drug approved for the treatment of 
highly active RRMS.136 Since then, siponimod 
and now also ozanimod have been approved as 
DMTs for patients with secondary progressive 
multiple sclerosis (SPMS) and RRMS, respec-
tively. While S1PR modulators have shown prom-
ising results in MS, they also have the potential to 
be useful DMTs in IBD, RA or PsO, as recently 
demonstrated in various animal models.137–142 
While there are no clinical data on S1PR modula-
tors in RA, and two studies regarding PsO,143,144 
the TOUCHSTONE (NCT01647516) and 
STEPSTONE (NCT02531113), as well as the 
‘True North’ trials demonstrated that ozanimod 
is safe, well tolerated and effective in patients with 
moderate to severe UC.5,145 Taken together, 
especially ozanimod could be an elegant mono-
therapy option for patients with highly active MS 
and moderate to severe IBD.

Teriflunomide and leflunomide
Teriflunomide and leflunomide reversibly inhibit 
the mitochondrial enzyme dihydroorotate dehy-
drogenase (DHODH), causing a decreased de 
novo pyrimidine synthesis, thus diminishing T- 
and B cell activation and proliferation.146 
Teriflunomide is approved for the treatment of 
mild to moderate RRMS, whereas its pro-drug 
leflunomide is in clinical use for the treatment of 
RA and psoriatic arthritis.147,148 Gastrointestinal 
symptoms are among the most common unwanted 
side effects of teriflunomide, but these events are 
usually mild and self-limiting. However, there are 
a few cases of severe (lymphocytic) colitis with 
teriflunomide treatment in patients with 
RRMS,149,150 and teriflunomide has also been 
associated with the onset of PsO.151,152 However, 
as these are single case reports, a discontinuation 
of teriflunomide in patients with comorbid PsO 

and IBD should be carefully considered, while in 
patients with mild to moderate RRMS and coex-
isting RA, teriflunomide remains a valid thera-
peutic option.

Discussion
In the following, we suggest three pragmatic 
treatment approaches for patients with MS and 
coexisting autoimmune disorders (Figures 1–3). 
After exclusion of contraindicated drugs, the 
therapeutics should be chosen according to the 
individual patient’s disease activity. Table 2 
shows the safety rating. Table 1 shows the FDA 
approval status of the respective immunosuppres-
sants. Overall, TNFα blockers are effectively uti-
lized in PsO, RA and IBD, yet have doubtlessly 
been shown to exacerbate or induce demyelina-
tion. Thus, TNFα  blockers are the only real 
absolute contraindication for all patients with 
coexisting MS (Figures 1–3; Table 2).

MS plus PsO (Figure 1)
As a chronic inflammatory skin condition, PsO 
can be treated not only systemically, but depend-
ing on disease severity and the existence of extra-
cutaneous manifestations (e.g. psoriasis–arthritis), 
topical DMTs are also available. Those therapeu-
tics can be combined with every DMT approved 
for MS.

Fumarates have proved effective in both RRMS 
and PsO, thus patients with a moderate disease 
course could be set on a monotherapy with DMF 
or alternatively a combination of DMF and MTX 
or CYA. Patients with highly active RRMS and 
more severe psoriasis could benefit from a mono-
therapy with secukinumab or a combination of 
secukinumab and DMF or MTX. As secuki-
numab has already been tested in a clinical phase 
II trial and there are several case reports of its suc-
cessful application in RRMS patients,90–94 the 
anti-IL17 antibody has – in comparison with 
other DMTs – the highest level of clinical evi-
dence. However, it needs to be taken into account 
that the trial by Havrdova et al.4 failed to reach its 
primary endpoint [the cumulative number of 
combined unique active lesions (CUALs) 
observed in magnetic resonance imaging (MRI) 
scans within 2 years], while still showing a signifi-
cant reduction in cumulative new gadolinium-
enhancing T1 lesions (secondary endpoint). 
Hence, larger, better powered trials are still 
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needed to evaluate further the benefit of IL-17 
targeting in RRMS patients (e.g. brodalumab, 
ixekizumab).

S1PR modulators have shown promising results 
in various PsO mouse models, demonstrating 
strong anti-proliferative and anti-inflammatory 
effects, significantly reducing the animals’ disease 
burden.137,138 This has been further corroborated 
in clinical studies with PsO patients, which dem-
onstrated a significant reduction of PsO plaque 
burden on treatment with the S1PR modulator 
ponesimod;143,144 interestingly, ponesimod is 
about to be approved for its application in 
RRMS.153 Thus, in addition to anti-IL17 anti-
bodies, S1PR modulators may be another good 

alternative for patients with highly active RRMS 
and coexisting PsO. Patients with concomitant 
active SPMS and PsO may be treated with siponi-
mod, yet there are no clinical data to support this 
assertion. Certain subgroups of RRMS patients 
with comorbid PsO may also profit from a ther-
apy with alemtuzumab, yet there is only one sin-
gle case report to support this approach.44

There have been several case studies describing 
an onset or exacerbation of PsO in MS patients 
treated with CD20 antibodies, teriflunomide, 
natalizumab and IFNs. However, these studies 
are mostly based on single case reports, whereas 
the vast majority of patients did not exhibit com-
parable unwanted side effects. Thus, the 

Figure 1.  Flow chart showing the decision-making process for patients with MS and PsO. Descriptions are 
given in the main text.
DMF, dimethyl fumarate; JAK, Janus kinase; MS, multiple sclerosis; MTX, methotrexate; PsO, psoriasis; S1PR, sphingosine-
1-phosphate receptor modulator.
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application of those DMTs should be carefully 
evaluated in patients with MS and coexisting 
PsO, yet they should not be generally excluded 
from the therapeutic arsenal, especially when 
patients have remained relapse free with these 
substances.

RA plus MS (Figure 2)
The DHODH inhibitors teriflunomide and leflu-
nomide are approved for moderate RRMS and 
RA, respectively. Even though leflunomide is the 
pro-drug of teriflunomide and there is vast clini-
cal experience with both DMTs, slight differences 
between the two substances or the respective 
patient populations (RA/MS) cannot be 

completely excluded. However, as DHODH 
inhibitors are already in clinical application for 
both conditions, teriflunomide is the obvious 
choice for patients with moderate RRMS and 
comorbid RA. Although MTX is not commonly 
used in patients with RRMS, the DHFR inhibitor 
has a rather favorable therapeutic profile and is 
the most frequently used DMT in RA. Thus, 
MTX could also be utilized as a second line 
crossover DMT. The same holds true for AZA.

Patients with highly active RRMS and RA have 
both shown responsiveness to anti-CD20 anti-
bodies (rituximab/ocrelizumab). In RA, rituxi-
mab is readily combined with other DMARDs 
(leflunomide or MTX),15 which could 

Figure 2.  Flow chart showing the decision-making process for patients with MS and RA. Descriptions are 
given in the main text.
DMF, dimethyl fumarate; HCQ, hydroxychloroquine; JAK, Janus kinase; MS, multiple sclerosis; MTX, methotrexate;  
RA, rheumatoid arthritis; S1PR, sphingosine-1-phosphate receptor modulator.
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additionally prohibit MS progression, but may 
also be a source of unwanted side effects and 
should therefore be carefully evaluated.

Patients with PPMS and RA could profit from 
ocrelizumab therapy, yet ocrelizumab is only 
approved for the application in MS. HCQ, which 
is now only rarely used in RA therapy, may poten-
tially become another option for PPMS in the 
future, but so far there are only experimental data 
available. The same is true for S1PR modulators, 
which have shown promising results in experimen-
tal arthritis models, but have not yet been tested 
for their clinical application in RA. In the early  
to mid-1990s, alemtuzumab was successfully 
applied in certain cohorts of therapy-refractory RA 
patients,42 yet its use has not prevailed due to its 

unfavorable safety profile and prolonged lympho-
penia. However, as mentioned for PsO, certain 
subgroups of RRMS patients with comorbid RA 
might profit from a therapy with alemtuzumab.

The CTLA4 fusion protein abatacept and the 
recombinant IL-1 receptor antagonist anakinra 
are both approved for RA and have also been 
tested in patients with RRMS, yet have either 
failed to show beneficial effects on disease pro-
gression,154 or the trials are still ongoing (anak-
inra: NCT04025554).

There are several case reports describing an onset 
or exacerbation of RA in MS patients treated with 
natalizumab and interferons.70,120–122 However, as 
discussed for PsO, these are single case reports 

Figure 3.  Flow chart showing the decision-making process for patients with MS and IBD. Descriptions are 
given in the main text.
AZA, azathioprine; CYA, cyclosporine A; IBD, inflammatory bowel disease; JAK, Janus kinase; MS, multiple sclerosis;  
MTX, methotrexate.
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and a general discontinuation of an already estab-
lished MS therapy – after RA onset – should be 
carefully evaluated.

IBDs plus MS (Figure 3)
While mild cases of IBD can be treated with local 
(rectal) glucocorticoids (e.g. budesonide) and/or 
salicylates (5-ASA), severe, refractory cases may 
need surgical attention. As mentioned for PsO, 
these topically administered substances should be 
continued throughout the MS therapy. However, 
the standard relapse prophylactic for IBDs – oral 
5-ASA – did not show a significant effect on MS 
disease progression and is thus not suitable for a 
combinatory treatment.

While AZA is no longer commonly used as a 
DMT in MS, the thiopurine is readily utilized as 
a monotherapy to maintain remission in IBD and 
is therefore the evident option for a combinatory 
therapy. If AZA is not well tolerated, MTX 
remains a possible secondary option.155 The cal-
cineurine inhibitor CYA is approved as a remis-
sion-inducing agent in severe, steroid refractory 
UC.16,17 Yet, because of the side effects of CYA, 
it is not generally used as a long-term therapeutic; 
remission maintenance is usually achieved instead 
with thiopurines or vedolizumab. Hence, CYA is 
not an optimal DMT for patients with coexisting 
MS and IBD, but may be carefully considered in 
certain cases.

Natalizumab has proved effective in the induction 
and maintenance of remission in IBDs. Hence, a 
natalizumab monotherapy is a valid therapeutic 
option for patients with highly active RRMS and 
IBD. Alternatively, ozanimod has recently been 
approved for both RRMS and moderate to severe 
IBD, thus especially patients with high docu-
mented JC virus titers could benefit from a treat-
ment with the S1PR modulator.

Due to frequently reported gastrointestinal side 
effects and recent reports of refractory lymphocytic 
colitis under teriflunomide,149,150 the DHOD 
inhibitor may not be the best therapeutic choice for 
patients with RRMS and comorbid IBD. The 
same is true for CD20 antibodies, which have also 
been associated with the onset of colitis. This is 
further corroborated by several animal models, 
demonstrating that B-cell depletion can deregulate 
the gastrointestinal immune system by increasing 
inflammatory cytokines in both blood serum and 

Table 2.  Efficacy and safety rating for each disease-modifying therapy with 
regard to use in the main autoimmune disorders discussed here.

MS IBD PsO RA

General immunosuppressants

  MTX + + + ++

  AZA + ++ + +

  MMF + + + +

  5-ASA (+/−) ++ (−) +

  HCQ (+) (+) – +

  CYA/TAC + ++ ++ ++

Oral/injectable MS therapeutics

  IFN ++ (−) (−) (−)

  TER/LEF ++ (−) + ++

  DMF ++ (+) ++ (+)

  S1PR +++ ++ (+) (+)

Monoclonal antibodies

  TOC (+/−) (+) (−) +

  USTE (+) ++ +++ 0

  SEC + +/− +++ (+)

  Anti-TNFα – – – +++ +++ +++

  NATA +++ ++ (−) (−)

  ALEM (+++) x (+) (+++)

  Anti-CD20 +++ (−) (−) +++

Others

  JAK (+) ++ ++ ++

  Abatacept 0 0 + ++

  Anakinra x (+) + ++

Color gradient ranges from absolutely contraindicated (dark red) to highly effective 
(dark green). – – –, absolutely contraindicated; (−), possibly harmful; (+), possibly 
effective; (+/−), mixed reports; (+++), highly effective; but restricted label due to 
safety concerns; –, harmful; +, effective; ++, very effective; +++, highly effective; 
0, not effective.
5-ASA, 5-aminosalicylic acid; ALEM, alemtuzumab; Anti-CD20, CD20-antibodies; 
Anti-TNFα, TNFα antibodies; AZA, azathioprine; CYA/TAC, cyclosporine/tacrolimus; 
DMF, dimethylfumarate; HCQ, hydroxchloroquine; IBD, inflammatory bowel 
disease; IFN, interferon; JAK, Janus kinase inhibitor; MMF, mycophenolate mofetil; 
MS, multiple sclerosis; MTX, methotrexate; NATA, natalizumab; PsO, psoriasis; 
RA, rheumatoid arthritis; S1PR, sphingosin-1-phosphate receptor modulator; 
SEC, secukinumab; TER/LEF, teriflunomide/leflunomide; TOC, tocilizumab; USTE, 
ustekinumab; x, no data.
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intestinal tissue.156,157 Nevertheless, those cases are 
also reports of rare instances and should not be 
over-interpreted.

The immunomodulatory drug glatiramer acetate 
(GLAT), is commonly used in patients with mod-
erate RRMS, but has – from a pathophysiology 
perspective – no clear application in other auto-
immune disorders. Nevertheless, there are a few 
studies in IBD animal models that demonstrate a 
therapeutic effect of GLAT158,159 via the induc-
tion of regulatory T cells.160 Thus, GLAT may 
potentially have a broader application outside of 
MS, but so far there are only experimental data 
available.

Future perspectives
As therapeutic strategies for cancer and autoim-
mune diseases of different organs target similar 
pathways and thus show some parallels, novel 
approaches in one of these fields often emerge 
from neighboring disciplines and benefit from 
experiences made there. The latter, together with 
distinct contrasting effects of treatments in differ-
ent diseases, provides valuable insight for overlap-
ping clinical conditions with more than one 
disease. Targeting specific intracellular signalling 
cascades or tyrosine kinases with small molecule 
inhibitors has become a general therapeutic strat-
egy in medical oncology. Thus, as shown for for-
mer chemotherapeutics – such as MTX or AZA 
– this trend has now also spread to autoimmune 
disorders, as demonstrated by Janus kinase 
inhibitors.

Janus kinases (JAKs) are cytoplasmic protein 
tyrosine kinases that mediate the induction of 
STAT proteins, which then activate the transcrip-
tion of various pro-inflammatory cytokines (e.g. 
INFγ or TNFα). JAK inhibitors, such as tofaci-
tinib, ruxolitinib or baricitinib, have shown effi-
cacy in the treatment of several inflammatory 
conditions and are approved for the treatment of 
PsO, RA and UC.161–163 In general, these small 
molecule inhibitors are less effective than biologi-
cals, yet have proved to be advantageous because 
of their oral/topical administration and overall 
cost-effectiveness.164 Although there have been 
conflicting results for JAK inhibitors in EAE 
models and MS patients,165,166 the JAK/STAT 
pathway is critically involved in MS pathophysiol-
ogy,167 thus JAK inhibitors may also become 
available for MS in the future.

In the past decades, immunotherapy has become 
more and more precise, targeting specific 
cytokines (e.g. IL-17) or cell types (e.g. B cells). 
According to numerous experimental animal 
models, MS was primarily considered a T-cell-
mediated disease. However, there is an increasing 
amount of evidence for the importance of B cells 
and humoral immunity in the genesis of demyeli-
nating lesions, making especially the BAFF/
APRIL system a possible therapeutic target.168 B 
cell-activating factor (BAFF) and a proliferation-
inducing ligand (APRIL) are inflammatory 
cytokines, which are primarily involved in B cell 
survival, maturation and activity.169 Yet, thus far 
targeting BAFF and/or APRIL with monoclonal 
antibodies or a soluble decoy TACI-Fc fusion 
protein did not bring the desired results in MS 
patients.170,171 One possible explanation is that 
the soluble decoy TACI-Fc fusion protein atacic-
ept only has a B cell subset-specific effect and 
might have disturbed the fine-tuned balance of 
conventional and regulatory B cells, resulting in 
excessive T cell responses. Furthermore, the 
BAFF antibody tabalumab, as well as atacicept, 
spares memory B cells, thus T cell activation may 
still be preserved.170 Similar results and conclu-
sions have been obtained for the application of 
atacicept and tabalumab in RA.172 Nevertheless, 
in spite of these negative results, CD20 antibod-
ies have demonstrated the efficacy of B cell tar-
geting therapies, thus we may see the emergence 
of new B cell-associated therapeutics for MS and 
RA in the future. In this regard, the Burton tyros-
ine kinase (BTK) is critically involved in B cell 
signalling and small molecule BTK inhibitors 
(e.g. tolebrutinib, evobrutinib) have shown prom-
ising results in preclinical MS and also RA mod-
els173 as well as in clinical trials.174 Moreover, 
there are several ongoing phase III trials on BTK 
inhibitors in MS. Thus, BTK inhibitors may soon 
become readily used substances in MS, RA and 
potentially also other inflammatory conditions.

Although it is not uncommon for MS patients to 
present with comorbid autoimmune disorders 
such as PsO, RA, and IBD, the likelihood of 
recruiting sufficient numbers of these patients for 
large-scale clinical trials in the foreseeable future 
is low. This emphasizes the importance of case 
reports and review articles, until the growing arse-
nal of new immunosuppressants is able to provide 
more straightforward treatment approaches for 
patients with MS and coexisting autoimmune 
disorders.
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